天池推荐系统入门赛——排序模型+模型融合
排序模型通过召回的操作, 我们已经进行了问题规模的缩减, 对于每个用户, 选择出了N篇文章作为了候选集,并基于召回的候选集构建了与用户历史相关的特征,以及用户本身的属性特征,文章本省的属性特征,以及用户与文章之间的特征,下面就是使用机器学习模型来对构造好的特征进行学习,然后对测试集进行预测,得到测试集中的每个候选集用户点击的概率,返回点击概率最大的topk个文章,作为最终的结果。
排序阶段选择了三个比较有代表性的排序模型,它们分别是:
LGB的排序模型
LGB的分类模型
深度学习的分类模型DIN
得到了最终的排序模型输出的结果之后,还选择了两种比较经典的模型集成的方法:
输出结果加权融合
Staking(将模型的输出结果再使用一个简单模型进行预测)
1234567891011import numpy as npimport pandas as pdimport picklefrom tqdm import tqdmimport gc, osimport timefrom datetime import datetimeimport lightgbm as lgbfrom skl ...
天池推荐系统入门赛——多路召回
# 多路召回
所谓的“多路召回”策略,就是指采用不同的策略、特征或简单模型,分别召回一部分候选集,然后把候选集混合在一起供后续排序模型使用,可以明显的看出,“多路召回策略”是在“计算速度”和“召回率”之间进行权衡的结果。其中,各种简单策略保证候选集的快速召回,从不同角度设计的策略保证召回率接近理想的状态,不至于损伤排序效果。如下图是多路召回的一个示意图,在多路召回中,每个策略之间毫不相关,所以一般可以写并发多线程同时进行,这样可以更加高效。
上图只是一个多路召回的例子,也就是说可以使用多种不同的策略来获取用户排序的候选商品集合,而具体使用哪些召回策略其实是与业务强相关的 ,针对不同的任务就会有对于该业务真实场景下需要考虑的召回规则。例如新闻推荐,召回规则可以是“热门视频”、“导演召回”、“演员召回”、“最近上映“、”流行趋势“、”类型召回“等等。
导包123456789101112131415161718192021import pandas as pd import numpy as npfrom tqdm import tqdm from collections im ...
天池推荐系统入门赛——特征工程
特征工程(制作特征和标签, 转成监督学习问题)我们先捋一下基于原始的给定数据, 有哪些特征可以直接利用:
文章的自身特征, category_id表示这文章的类型, created_at_ts表示文章建立的时间, 这个关系着文章的时效性, words_count是文章的字数, 一般字数太长我们不太喜欢点击, 也不排除有人就喜欢读长文。
文章的内容embedding特征, 这个召回的时候用过, 这里可以选择使用, 也可以选择不用, 也可以尝试其他类型的embedding特征, 比如W2V等
用户的设备特征信息
上面这些直接可以用的特征, 待做完特征工程之后, 直接就可以根据article_id或者是user_id把这些特征加入进去。 但是我们需要先基于召回的结果, 构造一些特征,然后制作标签,形成一个监督学习的数据集。构造监督数据集的思路, 根据召回结果, 我们会得到一个{user_id: [可能点击的文章列表]}形式的字典。 那么我们就可以对于每个用户, 每篇可能点击的文章构造一个监督测试集, 比如对于用户user1, 假设得到的他的召回列表{user1: [item1, item ...
天池推荐系统入门赛——数据分析
# 数据分析
数据分析的价值主要在于熟悉了解整个数据集的基本情况包括每个文件里有哪些数据,具体的文件中的每个字段表示什么实际含义,以及数据集中特征之间的相关性,在推荐场景下主要就是分析用户本身的基本属性,文章基本属性,以及用户和文章交互的一些分布,这些都有利于后面的召回策略的选择,以及特征工程。
建议:当特征工程和模型调参已经很难继续上分了,可以回来在重新从新的角度去分析这些数据,或许可以找到上分的灵感
导包1234567891011# 导入相关包%matplotlib inlineimport pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsplt.rc('font', family='SimHei', size=13)import os,gc,re,warnings,syswarnings.filterwarnings("ignore")
读取数据12345678910path = './dat ...
天池推荐系统入门赛——赛题理解+Baseline
# 赛题理解
赛题理解是切入一道赛题的基础,会影响后续特征工程和模型构建等各种工作,也影响着后续发展工作的方向,正确了解赛题背后的思想以及赛题业务逻辑的清晰,有利于花费更少时间构建更为有效的特征模型, 在各种比赛中, 赛题理解都是极其重要且必须走好的第一步, 今天我们就从赛题的理解出发, 首先了解一下这次赛题的概况和数据,从中分析赛题以及大致的处理方式, 其次我们了解模型评测的指标,最后对赛题的理解整理一些经验。
赛题简介此次比赛是新闻推荐场景下的用户行为预测挑战赛, 该赛题是以新闻APP中的新闻推荐为背景, 目的是要求我们根据用户历史浏览点击新闻文章的数据信息预测用户未来的点击行为, 即用户的最后一次点击的新闻文章, 这道赛题的设计初衷是引导大家了解推荐系统中的一些业务背景, 解决实际问题。
数据概况该数据来自某新闻APP平台的用户交互数据,包括30万用户,近300万次点击,共36万多篇不同的新闻文章,同时每篇新闻文章有对应的embedding向量表示。为了保证比赛的公平性,从中抽取20万用户的点击日志数据作为训练集,5万用户的点击日志数据作为测试集A,5万用户的点击日志数据作为 ...
【特征提取+分类模型】4种常见的NLP实践思路
越来越多的人选择参加算法赛事,为了提升项目实践能力,同时也希望能拿到好的成绩增加履历的丰富度。期望如此美好,现实却是:看完赛题,一点思路都木有。那么,当我们拿到一个算法赛题后,如何破题,如何找到可能的解题思路呢。
本文针对NLP项目给出了4种常见的解题思路,其中包含1种基于机器学习的思路和3种基于深度学习的思路。
一、数据及背景https://tianchi.aliyun.com/competition/entrance/531810/information(阿里天池-零基础入门NLP赛事)
二、数据下载及分析2.1 获取数据我们直接打开数据下载地址,看到的是这样一个页面:
接着三步走:注册报名下载数据,查看数据前五行可以看到我们获得的数据如下:
其中左边的label是数据集文本对应的标签,而右边的text则是编码后的文本,文本对应的标签列举如下:
根据官方描述:赛题以匿名处理后的新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游 ...